\(\int \cos ^{\frac {9}{2}}(c+d x) (A+C \sec ^2(c+d x)) \, dx\) [1075]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 80 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 (7 A+9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 (7 A+9 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 A \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \]

[Out]

2/15*(7*A+9*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/45*(7
*A+9*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/9*A*cos(d*x+c)^(7/2)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {4151, 3093, 2715, 2719} \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 (7 A+9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 (7 A+9 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{45 d}+\frac {2 A \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d} \]

[In]

Int[Cos[c + d*x]^(9/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(2*(7*A + 9*C)*EllipticE[(c + d*x)/2, 2])/(15*d) + (2*(7*A + 9*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(45*d) + (2
*A*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3093

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos
[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e +
f*x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rule 4151

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[b^2, Int
[(b*Cos[e + f*x])^(m - 2)*(C + A*Cos[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \cos ^{\frac {5}{2}}(c+d x) \left (C+A \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 A \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {1}{9} (7 A+9 C) \int \cos ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 (7 A+9 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 A \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {1}{15} (7 A+9 C) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 (7 A+9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 (7 A+9 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 A \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.94 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.81 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {12 (7 A+9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sqrt {\cos (c+d x)} (19 A+18 C+5 A \cos (2 (c+d x))) \sin (2 (c+d x))}{90 d} \]

[In]

Integrate[Cos[c + d*x]^(9/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(12*(7*A + 9*C)*EllipticE[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(19*A + 18*C + 5*A*Cos[2*(c + d*x)])*Sin[2*(c +
 d*x)])/(90*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(312\) vs. \(2(96)=192\).

Time = 13.52 (sec) , antiderivative size = 313, normalized size of antiderivative = 3.91

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-160 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+320 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-296 A -72 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (136 A +72 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-24 A -18 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-21 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-27 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{45 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(313\)

[In]

int(cos(d*x+c)^(9/2)*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/45*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-160*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10
+320*A*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-296*A-72*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(136*A+72
*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-24*A-18*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-21*A*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-27*C*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.42 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (5 \, A \cos \left (d x + c\right )^{3} + {\left (7 \, A + 9 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \, \sqrt {2} {\left (-7 i \, A - 9 i \, C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (7 i \, A + 9 i \, C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{45 \, d} \]

[In]

integrate(cos(d*x+c)^(9/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/45*(2*(5*A*cos(d*x + c)^3 + (7*A + 9*C)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 3*sqrt(2)*(-7*I*A -
9*I*C)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(7*I*A +
9*I*C)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(9/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(9/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(9/2), x)

Giac [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(9/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(9/2), x)

Mupad [B] (verification not implemented)

Time = 17.97 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.09 \[ \int \cos ^{\frac {9}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2\,A\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(9/2)*(A + C/cos(c + d*x)^2),x)

[Out]

- (2*A*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(
1/2)) - (2*C*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2
)^(1/2))